Biodiversity and environmental function of new *Thermoplasmata*

Olga V Golyshina*, Stepan Toshchakov, Sergey Gavrilov, Rafael Bargiela, Ilya Kublanov and Peter Golyshin
Thermoplasmata Reysenbach 2002, class. nov.

Type order: Thermoplasmatales Reysenbach 2002.
The order *Thermoplasmales*
Class *Thermoplasmata*
Phylum *Euryarchaeota*

The most acidophilic organisms

- Acidic pH optima and range (lowest known, growth at pH below 2, some strains are able to growth at pH 0: *Picrophilus* spp., *Acidiplasma* spp. and *Cuniculiplasma* spp.)
- Unique morphology (cell wall-lacking organisms)
- A great diversity of uncultured *Thermoplasmales*
The new member *Cuniculiplasma divulgatum* (the family *Cuniculiplasmataceae*) with sequence identities:

Thermogymnomonas acidicola (86.3 %),

followed by *Thermoplasma acidophilum* (84.7 %) and *Thermoplasma volcanium* (84.3 %), *Picrophilus torridus* and *Picrophilus oshimae* (both 84.9 %),

with more distantly relatives being members of the Ferroplasmaceae; both species of *Acidiplasma* (77.0 %) and *Ferroplasma acidiphilum* (73.9 %).

Golyshina et al., 2016a
Places of isolation of strains of *Cuniculiplasma divulgatum*

Mynydd Parys/Parys Mountain, Anglesey, North Wales, UK

Cantareras mine site in Tharsis, Huelva, Spain
Uncultured archaea within the order *Thermoplasmales*: candidate clades

“G-plasma”, 100% identical with 16S rRNA of *Cuniculiplasma divulgatum*

Acid Mine Drainage System
Iron Mountain, USA

Yelton et al., 2013
Physiological traits: *in silico* predictions in ‘G-plasma’ vs experimental data in *Cuniculiplasma* strains

- Iron oxidation
 - sulfocyanin

- Archaeal flagella and pili
 - the full operon encoding **FlaBCDEFGHIJ**

- S-layer prediction
 - oligosaccharyltransferase AgIB

- Methylotrophy
 - methenyl tetrahydrofolate cyclohydrolase and formyl-tetrahydrofolate synthetase

Electron micrographs of *Cuniculiplasma* *divulgatum* showing monolayer membranes and absence of the S-layer (**A**, **B**), pilus (**C**), arrow and pleomorphism of cells. Scale bars: 500 nm (**A**), 200 nm (**B**), 1 μm (**C,D**). Ultrathin sections (**A,B**) and Pt-C shadow castings (**C,D**). Figure shows cells of the strain PM4 (**B,C and D**) and SS (**A**). Arrowheads in **C and D** indicate the direction of shadow cast, arrows in **A and B** point to the cytoplasmic membrane.

(Golyshina et al., 2016b)

Phylogenetic tree based on sulfocyanin/rusticyanin genes
Overview of metabolic networks in acid mine drainage systems

Mendez-Garcia et al., 2015
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Acidiplasma</th>
<th>Ferroplasma</th>
<th>Thermoplama</th>
<th>Picrophilus</th>
<th>Thermogymnononas</th>
<th>Cuniculiplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell morphology</td>
<td>pleomorphic</td>
<td>pleomorphic</td>
<td>pleomorphic</td>
<td>Irregular coccoid</td>
<td>pleomorphic</td>
<td>pleomorphic</td>
</tr>
<tr>
<td>Cell wall</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-layer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motility</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pili</td>
<td>+</td>
<td>-</td>
<td>no information</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fe (II/III) metabolism</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T, °C optimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH range for growth</td>
<td>0.5-4 (1-1.5)</td>
<td>0.3-3 (1-1.7)</td>
<td>0.5-4 (1-2)</td>
<td>0.3-3.5 (0.7)</td>
<td>1.8-4 (3)</td>
<td>0.5-4 (1-1.2)</td>
</tr>
<tr>
<td>pH optimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic growth</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DNA G+C mol%</td>
<td>34-37</td>
<td>35-37</td>
<td>38-46</td>
<td>36</td>
<td>56</td>
<td>37</td>
</tr>
<tr>
<td>Respiratory quinones</td>
<td>naphtoquinone derivatives</td>
<td>no information</td>
<td>menaquinones, thermoplasmaquinones, methionaoquinones</td>
<td>no information</td>
<td>menaquinones</td>
<td>menaquinones, thermoplasmaquinones</td>
</tr>
<tr>
<td>Main sugar moiety in major lipid component</td>
<td>b-galactose</td>
<td>b-glucose</td>
<td>b-gulose</td>
<td>b-glucose</td>
<td>no information</td>
<td>no information</td>
</tr>
</tbody>
</table>

Golyshina et al., 2016 *Bergey’s Manual*
Distribution of *Cuniculiplasmataceae* (Golyshina et al., 2016b)
Genomic islands (GIs) in *C. divulgatum* strains PM4 and S5

GI incorporate genes of toxin-antitoxin, restriction-modification systems and being metal-, efflux-, transport-, and oxidative stress response-related

(Golyshina *et al.*, 2016b).
Coexistence of *C. divulgatum* PM4 with Mia14 (ARMAN-2-like) *in vitro* and *in situ*

General overview of Parys Mt community

Distribution of Parys Mt. metagenomic contigs by coverage and GC content. Clusters of contigs related to *C. divulgatum*—‘Ca. Mancarchaeum’ and uncultivated *Thermoplasmatales*—‘Ca. Micrarchaeota’ excluding ‘Ca. Mancarchaeum acidiphilum’ microbial consortia are shown with *dotted-line ovals* (Golyshina et al., 2017)
Conclusions

• Recently, the order *Thermoplasmatales* expanded by a number of cultured members from family *Cuniculiplasmataceae* with *Cuniculiplasma divulgatum* species.

• These archaea are globally ubiquitously distributed in low-pH settings.

• A number of physiological and genomic features suggest their environmental function linked to scavenger type of nutrition.

• Co-existence of *Cuniculiplasmataceae* with ARMAN-related archaea specify their common environmental strategy, metabolic interaction and evolution history.
Acknowledgements

The novel extremely acidophilic, cell-wall-deficient archaean *Cuniculiplasma divulgatum* gen. nov., sp. nov. represents a new family, *Cuniculiplasmataceae* fam. nov., of the order *Thermoplasmatales*

Olga V. Golysheva1, Heinrich Lönsdorf2, Ilya V. Kublanov3, Nadine I. Goldmanstein4, Kai-Uwe Hinrichs5 and Peter N. Golyshin1

1School of Biological Sciences, Bangor University, Daniel JG Bangor LL57 2UW, UK
2Central Unit of Microscopy, Helmholtz-Zentrum für Infekionsforschung, IMK-IFU, D-38124 Braunschweig, Germany
3Wageningen Institute of Microbiology, Russian Academy of Sciences, Prospect 604-Lettsa, Building 1/2, Moscow 117997, Russia
4MAULM - Center for Marine Environmental Sciences, University of Bremen, Lehbräu Str., Bremen 28359, Germany

Associate Editor: Michal M. Yakimov

Département de Génétique, Faculté des Sciences Exactes, Université du Québec à Montréal, Montréal, Québec, Canada

‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ

Olga V. Golysheva1, Stepan V. Toshchakov1, Kira S. Makarova, Sergey N. Gavrilov1, Alexandr A. Korchennkov, Iryna S. Lebednichenko, Ilya V. Kublanov3, Heimrich Lönsdorf2, Tams T. Nechitiaty1, Sergey N. Gavrilov1, Stepan V. Toshchakov1 & Peter N. Golyshin

Aleksei Korchennkov

Barrie Johnson (Bangor University, UK) and Antonio Garcia-Moyano (Uni Research Centre for Applied Biology, Bergen Norway) for providing samples

This work was supported by the Royal Society UK-Russia Exchange Grants #IE 130218 and #IE 160224 and by the Centre of Environmental Biotechnology Project funded by the European Regional Development Fund (ERDF) through the Welsh Government

Stepan Toshchakov, Sergey Gavrilov, Rafael Bargiela, Ilya Kublanov, Peter Golyshin